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Abstract

A new technologywas developedinthisstudywhichprovidesa successfulnumericalsimulationof

thewholeprocessofflowtransitionin3-D boundaxylayers,includinglineargrowth,secondaryinsta-

bility,breakdown,and trmasitionatrelativelylow CPU cost.Most otherspatialnumericalsimulations

requirehighCPU costmad blow up at thestageofflowbreakdown.A fourth-orderfinitedifference

scheme on stretchedand staggeredgrids,a fullyimplicittime-maxchingtechnique,a semi-coaxsening

multigridbasedon theso-calledapproximateline-boxrelaxation,mad a bufferdomainfortheoutflow

boundaryconditionswerean usedforhigh-orderaccuracy,goodstability,and fastconvergence.A new
fine-coarse-finegridmapping techniquewas developedtokeepthecoderunningafterthelaminarflow

breaksdown. The computationalresultsaxeingood agreementwithllneaxstabilitytheory,secondary

instabilitytheory,and some experiments.The costfora typicalcasewith162x 34 x 34gridisaround

2 CILAY-YMP CPU hoursforI0 T-S periods.

1 Introduction

The transitionprocessfrom laminar toturbulentflowina wall-boundedshearflowisstilla challenging

and unsolved problem. Natttraltransitionisa m_Iti-stageprocess(Narasimha,1990)involving2-D linear

evolution,3-D secondaryinstability,breakdown, and transition(FigureI).

The linearstabilityequationwas establishedby Orr (1907a,b) and Sommerfeld (1908),was solvedby

Tolknien (1931)and SchJichting(1932),and was experimentallyconfirmedby Schubauer and Skramstad

(1948). The secondary instabilitywas observed by Klebanoff,Tidstrom _ Sargent (1962)for K-type

fundamental transition,and was observed by Kachanov, Kozlov and Levchenko (1978)for subharmonic

transition.The theoreticalwork was accomplished by Herbert (1983a & 1983b). There isreallyvery

littlework, eithertheoreticalor experimental,about the breakdown and transitionzones which are the

major parts oftransitionprocess.



The numerical study of transition is still quite 1LmJted due to the lack of computational resources.

First, most numerical studies are temporal (Orszag & Kelis, 1980; Wray & Hussaini, 1984; Kleiser &

Laurien, 1985; Zang & Hussaini, 1986; Zang, Krist, Erlebader, & Hussaini, 1987). They can provide

better resolution but lack physically realistic representation (Joslin et at. 1992).

Second, although there have been some spatial studies (Fasel, 1976; Fasel & Bestek, 1986; Fasel &

Konzelmann, 1990; Spalart, 1989; Dansbasoglu, Biringen, & $treett, 1991), the spatial direct numerical

simulation (DNS) is still in its early age (Kleiser & Zang, 1991). Most of these can predict only the early

stages of transition (pre-onset simulation) or fully developed turbulent flow without a transition process

and require high CPU cost which is in the range of 100-1000 CP_Y-YMP CPU hours.

In contrast, the current study has two advantages. First, it was successful in spatial DNS for the

whole process of transition includh_ linear evolution, secondary instability, breakdown, and transition to

turbulence. Second, the current approach is more efficient. The spatial DN$ was carried out on a rather

coarse grid (16 × 34 × 34 for each T-S wavelength) st an acceptable CPU Cost which is in the range of 2

- 10 C]L_.Y-YM_ hours, boundary layer edge

free- stream disturbance

flow /

/

/
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Figure 1. Idealized sketch of transition process on a fiat plate.



2 Governing Equation In General Coordinates

Let

y = _(_,_,0,

the 3-D time-dependent incompressible Navier-Stokes equations can then be written as

I

1
w = yC"_:+ _¢_+ _:),

(1)

(2)

(3)

and

Ou _.OUu OVu OWu. ff._ 0 if_. 1-ffi + a(.__+..._+_._)+(_= +17._-_+(. )P-.-_eAtu = 0, (4)

a_ _[(ov,,a_,,)+o o o_+s( +___(+__ (_y_+_+_ _)P-_a_ = o, (5)

at +a[-_--+-_ +-T(-}+CG +,._+G )P- = o, (6)

OU OV OW = 0. (7)o---(+_ + o--(

where u, v, w are velocity components, U, V, W are contravariant velocity components, P is pressure, Re is

the Reynolds number based on the free stream velocity Uoo, the viscosity parameter v and some reference

length, for example, 6_ which is the displacement thickness of boundary layer at inflow,

Uoo65
Re = ---_

P

and At is the physical Lapladan operator tra_ferred to the computationM (_, 7/, _) space:

a 2
_-r=_a_ + 2(_,_.+ _y_ + _,m) alanzx. = (_;+ _ _...o_ o_

0_ 0 _ 0

o+ (_..+n.,+n..)N+(_..+_,,+_.) . (s)

Here, we have 7 equations for 7 unknownS, u, v, w, P, U, V, and W.

The perturbation equations are obtained by decomposing the total flow into steady base flow and a

perturbation. Using subscript 0 denote the base flow variables, and let

_(_,_,z,t) _- _0(,, u,z)_ _(_,u,z,t),
¢(_,_,z,t) ,-- ¢o(,,_,_)+¢(,,_,,z,t),
_(_, u,z, t) ,-- _o(_, _,,z) + P(_, _, _,t), (9)



where ff =

equations, we obtain the governing system for .the perturbations:

O,., O[,,(V + Vo) + _U] O[,.,(V + Vo) + _V]

o[u(w + wo) + uow] _ o _ 1-_eAtua¢ )+(& +,7._+¢. )v- =

a,, .a[,,(u+ _o)+,,or] a[_(v + Vo)+,,or] _.

o[vCW + Wo) + voW]) + 0 O 0 1_eA1v

o_, o[_(v + Uo)+ woV] o[_,(v+ Vo)+ _oV]
o-7+ J( o_ + o7

o[,o(w + Wo)+ woW])+ ._, o o _ 1o_ _ _+,7,_+_, )v-y_1_ =
Ou ov ow

=

(u,v,w), T7 = (U,V,W), and noting the base flow itselfalsosatisfiesthe Navier-Stokes

0, (10)

o, (11)

0, (12)

0, (13)

Combined with (t)-(3),thissystem alsohas 7 equationsand 7 unknowns forthe perturbations.

We perform the solvingprocessas follows:

I. Perform the surfaceand gridgenerationprocessesto obtainthe requiredJacobian coefficients.

2. Solvesystem (1)- (7)to obtainthe baseflowsolution.For a fiatplate,we use the Blasiussimilarity

solutionforthe base flow.

3. Solve system (I)- (3)and (10)- (13)to obtainthe perturbationsolutionbased on the above base
flow.

3 Boundary Conditions

Benney-Lin type disturbancesareimposed at the inflowboundary in thisstudy:

u(0, y, z, t) = e2aReal{¢u2_e -i'_}

+ e_+Real{¢,csd+e i(#'-'O}

+ e__Real{d__ed(-#z-"_)},

Am
v(-T,_], z,t) = e2dReal{_2de i(-a_-_t)}

+ e3d+Real{¢vz,l+e _(-_+_z-_)}

+ e__Real{d_=3d_ei(-a_-_z-wt)},

+ e_t_Real{¢_M_ei(-_-_'-_)},

(14)

where w is the real frequency of the disturbance, /_ is a real constant that represents the spanwise

wavenumber, and a = aR + iaz is the streamwise complex wavenumber obtained from linear stability

theory. ¢_, ¢_ and ¢_ are eigenfunctions for the Orr-Sommerfeld equation.
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A no slip boundary condition is applied at the solid wall. According to the linear stability theory, the

disturbances vanish at infinity, so we obtain the boundary conditions at far field given by

_(x, _ -* c¢, z, t) = O,

v(z, _ -. oo, z, t) = 0,

= 0. (15)

Also, no pressure condition is needed at the inflow, solid wan, or far field since a staggered grid is used.

4 Outflow Boundary Treatment

Outflow boundary conditions have been the focus of study for the spatial simulation of flow transition

by many researchers. For simplicity, we only describe the idea for a 2-D fiat plate. The technique for the

3-D problem is the same.

original computational domain ,,_

Lo,/g/,_z original outflow boundary

buffer domain

L_jS_

J

F

L total
buffered outflow boundary

Figure 2. Extended computational domain.

Taking the advantage of the staggered grid, we can obtain a fairly effective approach. First, a buffer

domain technique developed by Streett & Macaraeg (1989) is applied to our problem. Thus, a buffer

domain is appended to the end of the original outflow boundary to smear all possible reflections from

the buffexed outflow boundary (see Figure 2). The problem is, in general, that the conventional buffer

domain is too long (usually four to eight T-S wavelengths), which greatly increases computation cost. Our

goal is to maintain the accuracy in the original computational domain, and to eliminate all the possible

reflection waves in a very short buffer domain. To realize the above goal, the governing equations in the

buffer domain should be parabolicized to allow only strictly outgoing waves. Thus, a first buffer function

b(_) is introduced here and applied to the streamwise viscous terms:

82U b "" 82U 82V a2V
a_. _ (_)-_-£, a_ 2 + b(_)_-_. (16)

b(_) is a monotonically decreasing function that changes from 1 to 0 so that the upstream effects of the
streamwise viscous terms will gradually disappear in the buffer domain. The essential feature here is that

all damping mode disturbances at the buffexed outflow boundary become zero. To understand this, we

rewrite the first equation of (16) as

82U a2U

(1T)



Since b(_) -* 0 at the buffered outflow boundary, and accordingly _ --. co, then, we can also consider

that the buffered outflow boundary is compressed from _ -- co by the function V_. Now dearly, if the

disturbances are stable (damping modes), they will vanish at _ - co. To treat unstable (growing) modes,

we need a second buffer function bp_(_) that reduces the Reynolds number in the buffer domain gradually

to less than the critical (or subcritical) Reynolds number and makes all the perturbation modes become

damping

! _, (Is)
Re Re

Thus, the new modified governing equations in the computational (_, r/) plane become:

_+--°ulaWU+2Uou)+ o ._oV+UVo+UV)

bR, (b.a2U 1 @2 .U. @ U + 8P

av oCUoV+ uvo + uv) a(2VoV + vv)
_---_ + a_ _

bp.,(b 8zV 1 82V 8V 8P. + + )+ = o, (20)

8U 8V
+ -- O. (21)

a_ a_

The bufferfunctionsare chosenas follows:

ta.A(L_.II. ) -- _ ,

{c (_-L_'ig_*z)_ + 1 L_n_ < _ < Ltot_, (22)b_(_) = _ o < _ < _,_,..,.

It is clear that the first function decreases from one to zero very rapidly as one moves from the original

outflow boundary to the buffered outflow boundary. The second function increasing from 1 to c + 1 is

a quadratic function that is continuously dii_erentlable at the original outflow boundary. Note that the
total effect of these buffer functions is that, toward the buffered outflow boundary:

the momentum equations become increasingly convection dominated in the _-direction, while the

equations generally become parabolic; and

• the momentum equations become highly di/h_sion dominated in the y-direction.

This treatment makes the outgoing waves propagate forward without reflection in the _-direction, and

any oscillation in the y-direction will be effectively smeared in the buffer domain.

6
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Figure 3. Buffered outflow boundary points.

Finally, we need to specify the buffered outflow boundary conditions under these modified governing

equations. The parabolic character of the above equations requires only two boundary conditions. As
mentioned before, we have the disturbances tending to zero at the buffered outflow boundary (which is

actually located at _ : co), so one condition is

P=0. (23)

This is a very important condition since the elliptic character of pressure has not been modified in our

new governing equation. Any improper condition for P may cause trouble. For the second condition, we

use the traditional extrapolation method for V, i.e.,

o_v o. (24)
0_2

Though this condition may not be so accurate, accuracy of solutions in the buffer domain is not so

important, and the main concern is that there must be no reflection wave traveling back to the original

computational domain.

Referring to Figure 3, condition (23) is imposed directly on P by defining

Pc = 0. (25)

This is an implicit condition. With it, the discrete continuity equation associated with Pc is then used

to define U at the buffered boundary:

UE - Uc VN- Vc A_. (26)
ATI

Condition (24)isimposed by determiningV atghost pointsjustoutsidethe boundary:

vE = 2vc- vw. (27)

Note that the above treatmentisonly suitableforthe perturbationequations.
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5 Simplification

In this study, we still use rectangular but stretched grids obtained by a special but relatively simple

mapping (Figure 4):

z=_,

y = y(,/),

Z'-Co (28)

This yields

J -- _Ty_

,_== C, = 1,

_y= G =,7.=,7_= C.= G,= o. (29)

For our numerical simulation, we choose the transformation function

Y_"_ (30)_(_)= _._ + _=(_. - _)'

where y,_= is the height of the computational dom ahl in the physical coordinates y, _7,_ is the height

of the computational domain in the computational coordinate _/, and _, is a constant which can be used

to adjust the concentration of grid points. This yields an inverse map

_.Y(_ + _a,) (31)
,7(_,)= _,.,,...=(o.+ y) "

We can then obtain

}Tyy --

T/'7'_=Y'_"(T((r+ Y_a=) (32)
[,7,_(_+ ymo=(_,_-,7)]2'

27/m_fo'((r÷ y,_,_=) (33)
_._.:(_ + y)3 •

t
l

t , lllil. I,i

Figm_e 4. _/-direcfion stretched grid.

Under the above mapping, the governing equations can be simplified:

o,, o[,4u+ uo)+ _ou] a[,4v+ Vo)+ _ov] o[,,w+ _w] _+ aP I o,
-_ + _ ( o_ _ a,7 + -_ " a_ R,A__ =

_(o[_(u OP 1a_ + Vo)+ _oV] a[_(v + Vo)+ _oV] o[_w + _ow]) + _ 0,
_ + a_ + _ + _C aTl Re Axv :

(34)

(35)

8



/ ( + uo)+ _oU]+ _ o[_.v + o[,,,(v+ Vo)+ ,ooV]
on

+
o[ww 1 OP 1.t.

woW,) "t- = O, (36)
O_ c9( Re Alw

OU OV cgW

0-'2-+ _ + -_- : O, (37)
'U

= -, (3s)
W

w = -, (39)

v : ,,, (40)

where u, v, w, P, U, V, W ate all fluctuating parts of the corresponding variables, and uo, vo, w0, Uo, V0, Wo represent

the base flow (Blasius solution for the flat plate). The transferred Laplacian operator in the computational space

is simplified as

02 8 _ a s a '
' (41)

6 Discretization

We use a uniform staggered grid for our problem in the computational (4,_,() space (Figure 5). Letting _b

denote a generic function, the second-order backward Euler difference in time direction can be written as

a_ ~ 3¢-+, _ 4¢- + ¢--, (42)
Ot 2A_ '

and the fourth-ord_ central difference in space can be written as

_-; (4) -_b(4 + 2A4) -F 8¢(4 -b LX4) - 8_(4 - A4) + _b(4 - 2Zk_)12_

a¢2 [£_ ._ -¢(4 + 2A_) + 16¢(4 + 2A4) - 30¢(4) + 16¢(_ - A_) - _b(_ - 2A4)
a4_ ,-,,, 12A_ 2

_(_ la4 ) -¢(4 + _4) + 2_¢(4+ a4) - _7¢(0 + ¢(4 - _4)+
24A4

(43)

(44)

(45)
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/ I
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///I/
1 / t 1
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v, V

$

.Y/'_

/ ...._-- ...._ ...__

-7 -'-7 z

7Z .--_- ....Z ..__--

- j---_ 7 z

7z _ --_

- 7 ----_

u, U

--41-

L

w, W

Figure 5. Staggered grid structure in the computational (_, % _) space.

In the computational (f, _7, _) space, the grids ate uniform. Suppose u, v, w and U, V, W axe defined in
terms of a staggered grid in the computational space (see Figare 5). Here, the values of P ate associated with its
cell centers, u and U with centers of the cell surfaces patallel to the (%_) plane, v and V with centers of the cell
surfaces parallel to the (_,_) plane, and _ and W with centers of the cell surfaces parallel to the (_,_) plane.

Second-order backwatd Euler differences axe used in the time direction, and fourth-order central differences axe

used in space. We can write the disczetized governing equations symbolically as follows (Figure 6):

AEEuEE + AEuE + Awuw + Awwuww + ANNuNN + ANUN +

As_zs + Assuss nu AFFUFF + AFUF Jr AB_B + ABB_BB --

Acuc + Dww Pww + Dw Pw + DzPz - DcPc = S., (46)

BEE_)EE + BE_E -_ BW_W + Bww_ww _- BNN_NN Jr BN_N -_

Bsvs+ Bssvss + BFF'OFP + BFvF + BBvs + Bssvss -

Bcvc + EssPss + EsPs + ENPN -- EcPc = S,, (47)

CSE_EB + Csu, E + Cwww + Cwwwww + CNNwZ¢_ + CNtvN +

C, SW S Jr C$S'g)SS + CFFlg_FF Jr CFlrDF Jr CB'_B Jr CBB'WBB --

Ccwc + FBBPsB + FBPs + FFPp - FcPc = S=, (48)

DUEsUEE + DUEUB + DUwUw - DUcUc + DVNNV, vN +

+DVNV_r + DVsVs - DVaVv + DWFFWFF +

DWFW_ + DWBWs - DWcWc = SM. (49)

As an illustration of the notation we use, relevant symbols for the discrete f-momentum equation are depicted

in Figure 4. The coefficients and source term for the interior points of the discrete f-momentum equation (46)

10



associated with t=c are given as follows:

AEE

AE

AW

AWW =

ANN =

AN --

AS =

Ass -

AFF =

AF =

AB --

ABB --

AC --

DE =

DW =

DWW =

1

12ReA_2

4

3ReA_ 2
4

3ReA_2

1

12ReA_ 2
:'c

12ReA_? 2

4av

3ReA_

4a¢

3ReA_
(xc

12ReA_f
1

12ReA¢_

4

3ReA¢2

+ ._C_(UEE + 2Uo..),
lzz2_;

2_ (uB + 2Uo,,),

__ + 2r_e (Uw + 2uow),

2rive (Uww + 2Uo,,w),
12_

+ _(v,,. + Vo..) "ic
lz_? 12ReA_?'

2_/yc (V. 27c3-_" + v°_)+ 3R----_'

2_c _V. 27c
-- + _--_., . + vo,) 3Re_'

r_c (v.+vo,,)+ "re
12A_ 12ReA_'

+ _(w_ + Wo,,),

2%,c (W,
3_" " +Wo,),

4
23_--_-(Wb+ Wo,),

1 f_(W** + Wo.),12ReA_2

3 5 1 ac

1

24A_'

27

DC = 2--_'

1

24Lk_ '

lgn
-4 c + _-1 + _bv(-t=°_r_rV"" + 8_o_V,, - 8_osV, + tLossV,,

2Lkf 12Zkr/

-_ --u.o_,FW H + 8=oFW! - 8_o_W_ + _o_W,b). (s0)

Here, supemcripts n and n - 1 ate used to indicate values st previous time steps, and superscript n + 1, which
indicates the current time step, is dropped for convenience. Lower case subscripts denote the approximate values

of the _ and w at points where the associated values of u with capital subscript axe located (Figure 6). Other

symbols used in the above formulas are as follows:

a = _, 3' = 'r/_y. (51)
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AT

=

_ww
0

Pww

g_
_W

0 --

Pw

g.

_s

_1¢1¢

_N

,P,

_$S

IZB
-- "4_ 0

_BB _W_W
0

Pww

W't!

w_
'uw

Pw

Wi6

_BB

_B 'U.BB

Figure 6. Neighbor points for _-momentum equation

(U axe at the same points as _ and axe not shown here).

All function values that are requi_ed at other than the canonical locations axe obtained by fourth-order inter-

po]ations in the computational space. For example (see Figure 7),

= (9(vc + v_ + v_, + Vw)- (Vsww+ v_,w + _'sB+ V_NE))/S2, (s2)

f
I

½

Figuze 7. Neighbor points for fourth-order approximation for go.

The coefficients for the _7- and _- momentum equations axe defined in an analogous way, and the discrete

continuity equation is developed simply by applying the fourth-order central differences to each term.

7 Approximate Line-Box Relaxation (ALB)

7.1 2-D uniform grids

The basic approximate box relaxation (AB) approach is to relax by boxes instead of points. With a 2-D uniform

grid (Figure 8) as an example, we fi_t describe the basic idea behind AB.

12



rN + 6_

Pc + Z_P

--" 0
UE + _2

Ire -- 51

Figure 8. Approximate box relaxation.

B_ +B_w +_ +B_,-B_,_+ --

B_,,,_ +B,C_,,w+By:,,,, +B';,,o- B_,,,_+

The generic form of the equations associated with a Box for the 2-D uniform grids can be written as

A_,,E + A_uw + _t_,,,,+ A_,,s- A_,,c + a_, Pc _ S_° (53)
Zlz

Pc- Ps - s.., (54)
Az

Ps- Pc - s.o, (55)
A9

Pc- P_ - s,,,, (s_)
A9

_._-_c+rH-_c _ O. (57)
Az A_

Here, the superscripts zepresent the point at which the disczetisation is centered. We proceed in the 5ox-By-box
process with a few global point Ganss-Seidel relaxation sweeps on the momentum equations, changing u and v
and holding P fixed. This means that the four momentum equations (53)-(56) in the box phase ate approximately
satisfied. Now, proceeding by boxes in some order, we perform distributed relaxation of the form:

't/C <'-- I/,C -- _1_

t_C 4"- "eC -- 61,

Pc _ Pc + AP, (58)

where the corrections axe chosen to satisfy the discrete continuity equation and four disczete momentum equations
associated with the box. Note that the old values of u, r, and P approximately satisfy the associated momentum

equations, so we obtain the following system foe the corzections, el, e2, 51, 62, and AP:

AP
(,_,, +.,t_el) ,,,=- o,

Az
AP

(BZ6_+ v_l)- _-? = 0,
_p

+ -S.,,
Zi: _y

(59)

where

S,,,= , A: 4 -"c).

13



(59a) and (59b) TJeld

(59c) and (59d) yield

and together we have

Therefore, (59e) can be written as

oI

The cozzection axe thus given by

and

B_- BT_6x fl = -_,
6-;- B_- B_

6-;-_= A_+@ _,"

ex + ,I 5x + _
- +_____A =S_,

Az Ay

(1+ })6__(1+ _)6,+ =s..
Az A_

61 _--

6 2 :

el

e3

s_

7(x+D+(x+_)'
Az _

6x

= 61 "7,

zxP= (A_,,+ _,). _.

To simplify tkis scheme, note that for the case A_ << I, we have

A_ _- A BG,

SO

FoE most cases, we have

fl _ I,

Ay

B_ > B?,,

so a, fl and 7 can be _pproxlmated in genera] by

It is these approxhnations and update formu]as in (62) that

i_

B_

B_

we use in AB.

(60)

(61)

(62)
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7.2 General coordinates

For general coordinates, the discrete momentum equations can still be written in the same generic form as that
for Cartesian coordinates, but the continuity equation is changed to

UB -- Uc -t- V_v-- Vc _ O. (63)
An

The physical velocities u and v have the fo]]owing relations with the contravariant velocities U and V':

U = art+by,

V = c_+dr.

This leads to the discrete continuity equation written as

a.euB + b.e_E - acuc - bc¢_c + c_rfiJv+ d_rv_r - ccfic - dc_c = O,
A_ An

where the superscript -_ represents a point that is not located st a canonical position and therefore requires

interpolation. Assuming that

(bBA B - bcA e) < (aEAuz - acAt,c),

then the correspond correction equation can be approximated by

abe2 + ac_z d_r62 + dc_l-i- =S,..
An

Note that the defining relations for ¢1, ¢2, St, and 62

(64)

(65)

can be expressed in the same form as for Cartesian coordinates:

E2

61

52

6z

and

= , (66)

A_

where a_,ac, die, dc correspond to the mapping coefficients between u, v and U, V.

7.3 Approximate line-box relaxation (ALB) for 3-D problems

AB usually works well for 2-D problems, but frequently fags to provide fast convergence for 3-D problems. The
basic idea of ALB is to satisfy the continuity equation for all boYes lying on one line simultaneously. Figure 9 gives

the distribution of corrections in the (4, n) plane for the ALB. This kind of relaxation is very useful when the grids
are anisotropic. Assuming for simplicity that ¢==/3 = 1, then according to Figure 9, ALB solving the discrete

system (46)-(49) can be described as follows:

• Freezing P, G, V, W, v, and w, peffoIm line Ganss-Seidel relaxation on (46) over the entire computational
domain to obtain a new u.

• Freezing P, U, V, W, u, and w, perform line Gauss-Seidel relaxation on (47) over the entire computational
domain to obtain a new v.

• Freezing P, U, V, W, u, and _, perform line Gauss-Seidel relaxation on (48) over the entire computational
domain to obtain a new w.

• Use transformation (38)-(40) to obtain new U, V, W.
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• For all j = 2,3,-.-,_j - 1 at once: change Ui_ ½jk, Ui+ljk, Vij__ k,Wijk__, and Wij_+_ to s_tisfy the
associated continuity equations, then update Pq_ so that the new U, V, W and P as well as the associated

tzansferred _, v, to satisfy the three momentum equations.

Ui-_ 6/c--_8
--..._

Ui___ sk-_s
--'--I)-

_ri- 1 3k-_8

r.r_-1 2_-_2

,Vi ,,j___ = 0
I

P_e_+ ZXPe Ui+__e k + _e
O _'-_

V_ 9 _ +6s-6e
t
1

P_s_,+ A Ps
0

_ h + ,54- 6s

t
P_ + AP4

0 _

_ I k + 68 - 64

t
P_s_+ A P8

0

V__ k+62-68
t
I

Pi2h+ AP_
o

_, U_+{ _ _ + _4

_._+_ _ _ + _

__.U_+½ _ _ + _

Figuze 9. Distribution of cozzections in the (_, _/) plane.

Since all of the u, _, _ have been previously rela_ed, and the/7, V, W aze updated, we assume that equations

(46)-(48) hold exactly. Let e, 6, _ and AP represent the corrections for U, V, W and P, respectively. Thus, for

cube ijk (see Figure 9), the correction equations corresponding to (46)-(49) axe

_r/v,+{ s,_ _i-_ _rb,-*, _,)ej -D_j'; _AP_ = O, (67)

Bi_--__ B!_-! _ _'_-_ (6s),,+_--,_('%-'%+0 - u-_ _('%-_- '%)- ..._j,, "Ap_ = o,

ijk+_.,_iM.+_+(.;ijk_x1_ip.__)_rj--.,.-ijk _..,-,, $ "- O, (69)

+_v,_2___(6_-6_+,)-ev,____(%c,-6_) = s=,,., (_0)
]=2,3,---,n9- 1,

where the superscripts _epresent the point at which the disczetization is centered. This system has 4(hi - 2)

eqtmtions for 4(n_ - 2) variable,. Unfoztunately, coupling between the conection variables makes the problem
somewhat complicated. To develop a simpler approximate system, define
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Then, equation (70) can be written in terms of the unknowns 6j only:

Let

+CD ,yL:+
bi = ,,
,, = ,,

] = 2,3," "', r-,i -- 1.

Then we obtain the tridiagonal system

a2 b2
cs a3 bs

°•o ". °,•

cn_-t

_2

6s

_.___ .6.,__

_llrg i r_ h

Sl_t i nj--2 L

STIr i rLj-1 k

Thus, 5i, j = 2, 3,---, ny - 1 can be determined very effciently. The other velocity corrections are given by

ey = _.ySy,

o'y = _,._6y,

3"= 2, 3,-",_y - 1.

The U, V, and W are then updated on all cells in the i, k T-line as follows:

U}+{ F, +- U_+{ yk+ey,

Ui__F, _ Ui__F,-ey,

._=2,3,.--,ny-l,

._= 3,4, ..-,ny - I.

P is then updated via

(71)

(72)

(73)

(74)

(75)

(76)

(77)

_,_y_+_._y_+ A__y, (78)

3"= 2,3," ..,ny - 1.

8 Semi-Coarsening Multigrid

For the laxge-scnle algebraic system of the 3-D flows that must be solved at each time step, the usual relaxation

methods by themselves are much too slow. To obtain optimal efficiency, we use a multigrid scheme based on AB
and ALB described in the previous section. For simplicity of discussion, we consider only the two-grid case.

We use a full approximation scheme(FAS) to accommodate nonlinearities. A two-level FAS algorithm fox an

equation of the form

Lh_bh = f_' (79)
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may be describedlooselyas follows:

i) relaxon L_b _ : fh,

ii) solveL2h_b2h --L2hI_h_b_+ _h(f_ _ Lh_bh),

iil) replace_h _b_, h 2h _h•- +x_(_ -I£ ¢).

The notation we have introduced includesthe differenceoperators Lh and L_t_,the restrictionoperators Z__ (for

the approximation) and f_h (forthe residual),and the interpohttionoperator I_h.

A full-coarsening strategy is generally ineffective for problems that favor special coordinate directions (e.g.,

anisotropic problems). To overcome tiffs limitation, we consider now a special combination of semi-coarsening and
line-box relaxation. The basic idea is to use line-box relaxation in one direction (say the _._lirection) and coarsening

only in the other two directions (z- and z-directions). A two-level staggered grid projected in the (z, y)-plane and

(z, z)-plane is given in Figure 10.

The full weighting restriction is still used here fortransferring the residual from tlne to coarse grids. The stencils

can be expressed as follows:

_hCR_) : _ _ ,

These stencils can be explained geometrically as shown in Figures 11-12.
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Figure 10. Two-level staggezedgrid stz_ctuz= foz = - z dJzectionseJ_-coazsening:
(a) £ne gzid pzojection on (z, _/) p_e, (b) co=_ _a pzojectlon on (z, y) p_e,

(c) _ne and eoazse8ricl pzojectlon on (z, z) plane.

1
g

(_)

Figuze 11. Full-weighting zestriction foz (a) z-momentum
equation, (b) z-momentum equation.

Figuze 12. Full-weighting zestziction foz y-momentum and continuity equations.

Foz the zestziction of vaziables, billneaz interpolation is used. Its stencils aze

1 1_(_) : [,_ _],

Foz semi-coazsening, the coazse to fine t:ansfez opezatozs axe based on lineaz interpolation:

(8_)
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[ °]

_(_P) : ? _ .
16 16

The meaning of the above stencils is shown in Figures 13-15.
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9 Fine-Coarse-Fine Grid Mapping

The spatial DNS usually meets dit_culties after the flow goes into the breakdown stage when the shear layer

is developed and the vortex breaks down to small scale vortices. The numerical simulation will thus have a huge

energy burst, and the disturbance velocity will be amplified by tens or hundreds of times somewhere inside the
flow field . The code then blows up. Apparently, it is not the physical case, but is largely caused by that the

grid we used is not fine enough to resolve the small eddies which play the role to generate dissipations. To keep
the numerical simulation going, we developed • fine-coarse-fine grid mapping technique. To explain this technique,

let us see whet happens for e 1-D problem. We do the fine to coarse grid restriction and the coarse to fine grid

interpolation st each time step:

r2h. old
Ue = _h _1

Here, I_ n is a linear restriction and I_h is a linear interpolation.

sin(27rx/ZL) sin(2_x/4L) sin(Zrrx/L)

A_ '= .... _"......... _ ....... "l=g

K < 1 modes K = 1 modes

Figure 16. Fine-coarse-fine mapping.

Define L as s section which has five grid points on the fine grid, and (assume u_t = 0)

as the amplification factor.

Assume we have different frequency modes, e.g.,

21r 1 11

sin(KTz), K= I,_, TF§,""

(K > 1 is not visible on this grid), we can epproximately get a by numerical integration for different modes.

• ,.L ' sinCK--_ L)]-_[_(Kz- _) +
a = [sin(g_)+sin(K_)sin(g_)+ ]sin(K_L)] L

2_(_c,_)+ sin(2g_)
_"sin(2Klr) 'sin(-_) + sinCK_)+ sinC]g,_) +
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whenK = 1, c_ = 0, when K --* 0, _ --* 1.

1.5

1.0)_

0.5.

I I
0.0 ....

0.0 0.5 1.0
k

115

Figure 17. Amplification factor for different modes.

Figure 17 cleaJrly shows that this kind of grid mapping, fine to coarse restriction and coarse to fine interpolation,

significantly damps the highest frequency (K = 1), but has only a little effect on other modes (K < 1), and has
almost no effect on low frequency modes (K --* 0).

The computational resources are still quite limited for DNS even if we use today's largest supercomputer. For

certain grids, the highest frequency which can be well simulated is K = 1. This highest mode may generate higher
frequencies which can not be simulated by current _ds and may cause the computation to fail. This fine-coarse-fine

grid mapping damps the K = 1 mode and protects other frequency modes. Of course, we do not want to eliminate

the K = 1 mode, but to restrict its energy growth. The actual procedure of this technique is

T2A° oZd
I. _¢ =._h "! ,

Here, we choose

= -_. 0, 2 + r_ + _2),

which is proportional to the perturbation energy. Therefore, there is very little damping to K = 1 when the

perturbation is very small. In this way, we successfully keep the code running to simulate the whole process of

transition: linear evolution, secondary instability, breakdown, and transition. Note that the large eddies play a
much more important role in flow transition than do small eddies which correspond to high frequency modes.

We have to sacl_fice these small eddies due to the lack of computer resources. But, the physics of transition and

turbulence a_e still simulated quite well due to the accurate zepzesentatlon of lower frequency modes corresponding

to large eddies.

10 Computational Results

10.1 Comparison with linear stability theory (LST)

To verify the accuracy of our approach, we compare our results with the linear theory by assuming a parallel

steady base flow and imposing a small disturbance at inflow. The base flow is now _o(z, y) = _o(zo, _/), to(Z, y) = 0,

where zto(zo, _) is the Biaslus similarity solution at inflow. Since it is easy for finite di_erence schemes to simulate

the damping (stable) modes, we just test the growing (unstable) modes.

Let Re_ = 900, Fr = 86 (_ = 0.0774), and _ = 0 (2-D case). The Orr-Sommerfeld solution provides an

eigenvalue

= aR + iaz = 0.2229 - i0.00451,

and the associated eigenfunctions _, _, _, and 4] which are dependent only on y (Figure 18).

22



1.0

0.5

0.0

0.00

--0.05

-0.10

-0.15

--O.20
I

-0.25!

--0.30

0

Streamwise velocity eigenfunction _"

5 !0 15 20

Wall-normal velocity eigenfuncUon _6"

°° .....°°'''°°°"

°
°-

°

.°

o°

o°
o

o°

°"

"°°o°-°

5 lO 15 20

Y

Figure 18. Streamwise and wall-normal vdocity elgenfunctions of

an unstable mode (Re_ = 900) in 2-D flat plate flow.

In LST, the disturbances ate assumed to be traveling waves. In the 2-D case, this yields

_,= _e-_'=(q,_cos(`_R_- o,Rt) - _,_,i,_(_Rz- _'RO),
,, = •e-_"" (_'Rco,(,_ - o,R_)- _'_,i,_(,,R_- ,,,_0). (83)

The inflow boundary velocities can then be obtained by setting z = _o for _J and z = Zo - _ for v (zo is the
z-coordinate at inflow). We assume that • is small Figure 18 shows the complex elgenfunctions for both u and

components (_b_, _b_, _b_, and _b}) in the physical (z, 9)- plane, which are notmallzed by setting maz(_b_} - 1.

A moderate computational domain is selected. In this case, the plate length (measured from the inflow location

z = z0) is set to eleven ToUmien-Schlichting (T-S) wavelengths, while the buffer domain is an additional single

wavelength, making the length of the total computational domain twelve T-S wavelengths. Here we choose 9me_ =

75 and use a total computational grid with 362 x 50 grid points. The grid is highly anisotroplc near the solid wall
(_ >>_).

Since we use a fully-impllclt scheme, the time step is restricted mainly by accuracy consideration. For our tests,
we take

2_
At = -- = 0.2537.

320_'

The convergence rate of the semi-coarsening multlgfid method, which we generally found to be about 0.2 per
V(2,2) cycle (relax twice on each grid level before descending and ascending), is much better than the performance
of single-grid relaxation, as shown in Figure 19.
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Figure 19. Convezgextce history at a fixed time for multigrid and single-grid relaxation.

In order to compare the computational results with the linear theory solution, which is accurate for the paxallel

wall-bounded base flow with small disturbances, we fu_t assume that the base flow is everywhere given by

= Cro(O,,7), = o, • = zo-L

where, Uo(0, _/) is the Blaslus similarity solution in the computational (_, _/) plane at _ = 0 and that the dlspla_ement
thickness of the boundary layez is a constant, 6-*0. Then Re*(= Re_), a, and _ do not change along the stxeamwise
dkection. The streamwise and wall-normal velocity components, u and #, of the disturbance after 13 T-S periods

(t=13T) axe compared with the solutions obtained by the linear theory at a vertical position close to the solid wall

(V* = 1.3137 for u and 9* = 1.2448 for 9) in Figure 20. Excellent agreement in both amplitude and phase between
the computational results <)four fourth-order finite difference scheme and the solution obtained by LST is observed

in the physical domain, comparison of streamwise disturbance velocity

I
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03.95 371.60 439.25 506.91 574.56
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0.0

--0.5
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comparison of wall-normal disturbance velocity
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S42.21

,o

303.95 37t.60 439.25 506.91 S74.56 II 642.21

physical domain Ábuffer

Figure 20. Comparison of the numerical and theoretical velocity components near the solid wall (!t* : 1.3137 for

and V* = 1.2448 for v). Re* = 900, Fr = 86, parallel wall-bounded base flow assumption is used grids: 362 x 50

(11 T-S wavelength physical domain + 1 wavelength buffer domain).
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Tocompareour numerical results with those obtained by LST more precisely, we check the profiles of different

Fourier modes.

The profiles of the disturbance waves axe obtained by using the Fourier transformation. Generally, we can

expand any continuous fmxction in the spectral space. Since

[,+T y, (84)

where _(z, y,*) is the complex disturbance velocity and _(k) axe the Fourier coefficients corresponding to the

_equency kw, we can then obtain

= 2"_/a(k) 2 -l- bCk)', k - O, 1, 2,... (85)

with

_; [t+T

[,+T Real{ (=, 0}si"(k 0

(86)

(87)

Only the fundamental wave (k = 1)isobtained inthiscase.Figuze 21 depictsthe stxeamwise and wall-normal

disturbancevdocity profilesat z* = 439.2 and 608.4 (z* = z/6,*o),and shows the excellentagreement with those

obtained by linearstabilitytheory.

of fundamental wave uStreamwise disturbance profile x

8 -- LST 8_ -- LST

o O DNS+MG o o DNS+MC

0.0 0.5 l.O 1.5 2.0 0 2 4
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I0 I0
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Figure 21. Comparison of the numerical and LSTvdocity profilesat z* = 439.2 and 608.4.

To check the high order accuracy,two differentgrids(362 x 50 and 182 x 26) aze tested. For this kind of

unsteady problem, itisquitedifficultto show the gridconvergence.We definethe relativeL2 errornorm for both
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where u, _ denote the numerical solution, and u,, ve denote the LST solution. The results given in Table I show

that the accuracy of our scheme under the above measure is about O(hS'S).

grids IIE.II2 IIE,II_
-182 x 26 0.3315 0.3243

362 x 50 0.0393 0.0319

Table I. Relative L2 error norm for u and v after

13 T-S periods (calculated in physical domain).

10.2 Secondary instability and transition

Now we return to the tealworld. The base flow is now not paxalhl to the solid wall, but the Blasius similarity

sdution.

The computational domain is restricted to

z

Y

[z0, z0 + If _o],

E [0, _,_],

IN' N 1'

where l® is the number of T-S wavdengths in the computational domain, and _o is the T-S wavelength at inflow

(the T-S wavelength _ varies when the base flow is non-paxallel).

A Benney-Lin (1980) type disturbance is imposed on the inflow:

_'(o,_,z, _)= aeal{_)C_)d "' + ,sd+_,_+o ",-'3_-_3_-- ,,

where _baa(y) and _b_+(y) correspond respectivdy to 2-D and 3-D eignsolutions of the Or_-Sommeffeld equation
and the supezscript (k) denotes different vdodty components. Following is a typical case we chose:

Re_ = 900, Fr = 86 (_ = 0.0774),

/3 = 0.1, Ym_ = 50,

a2d = 0.2229- 0.00451i,

a_ = 0.2169- 0.00419i,

e2d = 0.03, tiM± = 0.01,

lffi = 10 with 2 T-S wavelengths for buffer domain

zo = 303.9, ze,ta = 593.6.

The grid we used here is 162 x 34 x 34 (including eight wavelengths and a two wavelength buffer domain). The

time step is set to _ of the 3-D T-S wave period.

It takes around 9 CRAY-YMP CPU hours for the code to run 30 T-S periods. Figures 22 and 23 depict the

contours of relative helicity at di_erent times which chaxly show the process of K-type fundamental transition,

_-wave formation, the peak and valley splitting and vortex breakdown. It is found that the breakdown begins

at the second peak when the _-wave is intensified to certain degree and the shear flow is developed. The vortex
breakdown fu_her contaminates the fl0w field which leads to a transition process. The patterns of helicity at

t = 30T is very siml]_ to those t 7T, which suggests that the whole process of transition has been built up after
t = 7T. It tuzns out that less than 2 CRAY-YMP hours axe needed to simulate the whole pzocess of transition for

a 162 x 34 x 34 grid and 7 T-S periods. Figures 24 and 25 give the contour plots of total vorticity magnitude on
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the y = 0.0477 (z, z)-plane and spanwise vorticity on the z : 31.4 (z, y)-plane at different times which clearly

show the process of vortex breakdown and formation of multiple spikes. The appearance of random moving small

vortexes after breakdown provides a clue that the flow no longer keeps its laminar status. These contours also show

a qualitative a_reement with the laboratory experiment conducted by Saric et al. (1984).

The z-component of perturbation velocity, u, at different streamwise positions, z - 305,421, and 537, but

with same y-coordinate (y : 0.3667) is shown in Figure 26. Although the disturbance imposed at inflow is a sine
function as shown at z = 305, the perturbation at other points is largely amplified and distorted. The perturbation

velocity no longer keeps its sine function shape, but starts oscillating very fast, showing that high frequency modes
have been induced.

We also averaged u and v on z -- 31.4 (z,y)-plane at di_erent stresmwise positions, z - 305,363,421,479,

and 537 after the transition process was built up. The time-averaged _ and V are given in Figures 27, 28, 29, and

30. Figures 28 and 29 depict the differences in _ profiles between the Blasius similarity solution and computational
results at z -- 421 and 537, which qualitatively agree with the experimental results given by Suder, O'Brlen, and

Reshotko. Figures 28 and 29 also show that the _-profile in the transition zone is sharper than those of Blasius
m c_

solution. The wall stress 1" - p_-_ is then larger than that of laminar flows.

Figure 30 gives the _-profile. The _ is always positive in a laminar boundary layer. But, our computational
results show that _ varies from positive to negative and then becomes positive again. This is a typical sign that

the flow is experiencing transition. Figttre 31 shows that the spectrum of perturbation u becomes wider as the flow
moves downstream. We also tried another case :

Re_ = 732,

w2d - 0.0909,

wad = 0.04545,

= 0.2418, y,_= = 50,

a2d = 0.2490- 0.00351i,

ass = 0.1103- 0.00650i,

e2_ = 0.015, es_ = 0.005,

l= = 10 with 2 T-S wavelengths for buffer domain

zo = 248.2, ze,,a = 437.5.

The grid we used here is still 162 x 34 x 34 (including eight wavelengths and a two wavelength buffer domain).

This was set to correspond to a subhsrmonic transition, but we still got a k-type fundamental transition when we
chose e2d - 0.03 and es_+ - 0.01. However, when we changed to e2d - 0.015 and esd:_ - 0.005, a subharmonic

transition was very elearly observed ( see figure 32).

There is really a lack of reliable experimental data for transitional flow, which can be used to judge the

computational results. Also, we need finer grids to get better resolution for post-onset flow or turbulent flow. We
have to sacrifice those small eddies now. However, the results apparently provide physically conect simulations for

the whole process of flow transition.
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Figure 22. Front view of the relative helieity obtained on a 162 x 34 x 34 gird at different times.

Re" = 900, Fr = 86,/_ = 0.1, e2d = 0.03, es_ = 0.01. Flow direction is from left to right.
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Figure 23. Bird view of the relative hellcity obtained on a 162 x 34 x 34 gird at di_erent times.

Re' : 900, Fr = 86,_ = 0.1,_2d -- 0.03, c3a = 0.01. Flow direction is from left to fight.
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Figure 24. Contour plots of the total vorticity magnitude obtained on a 162 x 34 x 34

gird at different times on the y_ = 0.1123 (=, z)-plane. Re* = 900, Fr = 86,fl = 0.1,

e2d = 0.03, e3a = 0.01. Contour interval is 0.02, flow direction is from left to right.
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Figure 25. Contours plots of spanwlse vorticity on the z_ = 0 (z, y)-plane

at different times. Re* = 900, Fr = 86,/_ = 0.1,e2a = 0.03,eaa = 0.01.

Contour interval is 0.02, flow direction is from left to right.
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Figure 27. Time-averaged _-profiles at z = 31, z = 304, 362,421,479, and 537.

Re_ = 900, Fr = 86,_ = 0.1, e2d = 0.03, es,_ = 0.01.
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Figure 28. Comparison between fi-profiles and the Blasius profile at z = 421, z = 31.
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(6 T-S wavelengths physical domain +1 wavelength buffer) is used.

35



rS ffi

rB z
t:ST

zS=

*_xr

t=6T

=S=

=S=
t=7T

=Ba

t=8T

t=9T

Figure 32. Bird view of the relative helicity of subharmonic transition obtained on a 162 x 34 x 34 gird at
dlf_erent times. Re* = 732,fl = 0.2418,e_ = 0.015, es_ = 0.005. Flow direction is from left to right.

36



11 Concluding Remarks

• The fully implicit time-marching and fourth-order finite difference scheme on a stretched and staggered grid is

accurate enough to simulate the pre-onset transitional flow with a relatively coarse grid. The computational

results agree with linear stability theory, secondary instability theory and some experiments.

• The simulation with relatively coarse grids still can provide qualitatively correct prediction for transitional

flow. It shows that the large eddies play more important roles in the process of flow transition.

• The spatial DNS with relatively coarse grids meets trouble at the flow bzeal_down stage since the grid is

not fine enough to resolve the small eddies which play the role to generate dissipations. We then need to
introduce some numerical dissipation. The new fine-coarse-fine grid mapping technique can keep the DNS

code running to simulate the whole process of transition, including the linear growth, secondary instability,

breakdown, and transition.

• To get more accurate DNS simulations, we still need finer grids, especially for post-onset flows.
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